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ABSTRACT

This paper introduces the Gompertz �exible Weibull distribution as an

extension of the �exible Weibull distribution. Its various statistical prop-

erties are obtained and established while the method of maximum like-

lihood estimation is used in estimating the unknown model parameters.

The application of Gompertz �exible Weibull distribution is illustrated

by making use of three real life data sets, this is done to demonstrate

its potentials over some other important distributions like the Gompertz

Weibull, Gompertz Burr type XII, Gompertz Lomax, exponentiated �exi-

ble Weibull, exponentiated �exible Weibull extension and Kumaraswamy
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�exible Weibull distributions. Simulation studies were also conducted

and the behavior of the Gompertz �exible Weibull parameters were in-

vestigated.

Keywords: Family of distributions,�exible Weibull, generalization, Gom-

pertz distribution, mathematical statistics, maximum like-

lihood estimation, statistical properties.

1. Introduction

Weibull distribution is one of the popular standard distributions in statis-
tics, engineering and medicine. It has the Rayleigh and exponential distri-
butions as sub-models. It has a monotonic failure rate and it is suitable for
modeling real life phenomena with monotonic failure rates (Ahmad and Iqbal,
2017). Further details about some statistical properties and real life applica-
tions of the Weibull distribution are available in Oguntunde et al. (2014).

Despite the attractive properties of the Weibull distribution, it has the dis-
advantage of not being able to handle data sets with non-monotonic failure
rate. To this end, various modi�cations and extensions of the Weibull distri-
bution have been proposed and introduced in recent years. For instance, the
Kumaraswamy Weibull distribution (Cordeiro et al., 2010), beta Weibull dis-
tribution (Famoye et al., 2005), transmuted Weibull distribution (Aryal and
Tsokos, 2011), �exible Weibull distribution (Bebbington et al., 2007) and sev-
eral others are notable examples and generalizations aimed at obtaining non-
monotonic failure rates.

Out of all the various modi�cations of the Weibull distribution, of inter-
est in this research is the �exible Weibull distribution because it has many
applications in applied statistics, life testing experiments, clinical studies and
reliability analysis (Bebbington et al., 2007, El-Desouky et al., 2017b). Besides,
it has increasing, decreasing or bathtub shaped failure rate.

Interests in some recent researches have been shifted to generalizing the
�exible Weibull distribution. All these attempts were aimed at increasing
the modeling capability of the �exible Weibull distribution. For instance, the
beta �exible Weibull distribution (El-Desouky et al., 2017a), exponential �ex-
ible Weibull extension distribution (El-Desouky et al., 2017b), exponentiated
�exible Weibull extension distribution (El-Gohary et al., 2015), exponentiated
generalized �exible Weibull extension distribution (Mustafa et al., 2016), gen-
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eralized �exible Weibull extension distribution (Ahmad and Iqbal, 2017) and
transmuted �exible Weibull extension distribution (Ahmad and Hussain, 2017)
are remarkable ones in the literature.

Also, it is of interest in this research to extend the �exible Weibull dis-
tribution with the aim of developing a more �exible and versatile compound
distribution but with a relatively new generalized family of distribution; the
Gompertz family of distribution. It was developed recently by Alizadeh et al.
(2017) and it has also been used by Oguntunde et al. (2017b) to illustrate the
superiority of the Gompertz Lomax distribution over the Weibull Lomax, beta
Lomax and Kumaraswamy Lomax distributions; this however is a good selling
point for the Gompertz family of distribution. Besides, its ability to develop a
compound distribution that can perform better than its counterpart compound
distributions developed from beta, Weibull and Kumaraswamy families of dis-
tributions is a great motivation for this research. The various properties of the
Gompertz �exible Weibull distribution will be derived and three di�erent real
life data sets will be used to demonstrate the potentials of the distribution.

The major motivation are the study of modelling and analyses of life time
data are important and crucial. However, the quality of statistical analyses
depends heavily on the �tness of the assumed life time distribution. The Gom-
pertz family can be applied more e�ectively on censored incomplete data be-
cause it is more tractable than some families. Therefore, the new model can
analyze continuous univariate and multivariate sets. Moreover, to generate
distributions with reversed-J, right-skewed, symmetric and left-skewed shaped.

The remaining part of this paper is written in the following manner; the
densities of the four-parameter Gompertz �exible Weibull distribution are ob-
tained in Section 2 including its various statistical properties and estimation
of model parameters while real life applications are provided in Section 3 and
simulation studies are provided in Section 4. The conclusion are provided in
Sections 5.

2. The Gompertz Flexible Weibull (GoFW)
Distribution

Let T denote a random variable, the densities of the �exible Weibull distri-
bution are:

G(t) = 1− exp
(
−eαt−

η
t

)
; t > 0, α > 0, η > 0 (1)
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and

g(t) =
(
α+

η

t2

)
eαt−

η
t exp

(
−eαt−

η
t

)
; t > 0, α > 0, η > 0 (2)

respectively, where G(t) is the cumulative distribution function (cdf) and g(t)
is the probability density function (pdf).

Also, the cdf and pdf of the Gompertz generalized family of distribution
are:

F (t) = 1− e(
θ
γ ){1−[1−G(t)]−γ} (3)

and
f(t) = θg(t) [1−G(t)]

−γ−1
e(

θ
γ ){1−[1−G(t)]−γ} (4)

respectively, where θ and γ are additional shape parameters.

Therefore, the cdf of the Gompertz �exible Weibull (GoFW) distribution is
obtained by substituting the expression in (1) into (3) as follows:

F (t) = 1− e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
(5)

Its corresponding pdf is obtained by substituting (1) and (2) into (4) to give:

f(t) = θ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
(6)

for α, η, θ and γ > 0.

Possible plots for the pdf of the GoFW distribution at varied parameters
are as shown in Figure 1. From the �gure, it can be seen that the shape of the
GoFW distribution could either be decreasing or unimodal (inverted bathtub)
based on the parameter values.
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Figure 1: Plot for the pdf of the Gompertz �exible Weibull distribution

2.1 Expansion for the pdf

f(t) = θ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
(7)

By making use of the series expansion; e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
,

f(t) = θ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
×

∞∑
i=0

( θγ )i

i!

{
1−

[
exp

(
−eαt−

η
t

)]−γ}i
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Using binomial expansion,

f(t) = θ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ ∞∑
i=0

( θγ )i

i!
×

∞∑
k=0

(−1)k
(
i

k

)[
exp

(
−eαt−

η
t

)]−γ k
then,

f(t) = θ
(
α+

η

t2

)
eαt−

η
t

∞∑
i=0

∞∑
k=0

(−1)k

i!

( θ
γ

)i( i
k

)[
exp

(
−eαt−

η
t

)]−γ (k+1)

Using the series expansion of
[
exp

(
−eαt−

η
t

)]−γ (k+1)
,

f(t) = θ
(
α+

η

t2

)
eαt−

η
t

∞∑
i=0

∞∑
k=0

(−1)k

i!

( θ
γ

)i( i
k

)
×

∞∑
j=0

[γ (k + 1)]j

j!
ej(αt−

η
t )

=
(
α+

η

t2

) ∞∑
i=0

∞∑
k=0

∞∑
j=0

(−1)k[γ (k + 1)]jθi+1

i! j!

( 1

γ

)i( i
k

)
×

e(j+1)(αt)
∞∑
l=0

(−1)l

l!
[η(j + 1)]lt−l

which reduces to give:

f(t) =
(
α+

η

t2

) ∞∑
i=0

∞∑
k=0

∞∑
j=0

∞∑
l=0

(−1)k+l[γ (k + 1)]jθi+1

i! j! l!
×

( 1

γ

)i( i
k

)
e(j+1)(αt)[η(j + 1)]lt−l (8)

The expression in equation (8) can however be used to derive expressions
for the moment, moment generating function (mgf), entropy and many other
properties.

2.2 Reliability Analysis

The reliability analysis of the GoFW distribution which include the reli-
ability function, failure rate, reversed hazard function and odds function are
obtained as follows:
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Survival Function:
Survival (or reliability) function is given as:

S(t) = 1− F (t) (9)

Therefore, the survival function of the GoFW distribution is obtained as:

S(t) = e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
; α, η, θ, γ > 0 (10)

Hazard Function(or Failure Rate):
Hazard function is obtained from:

h(t) =
f(t)

S(t)
(11)

Hence, the failure rate for the GoFW distribution is obtained as:

h(t) = θ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
; α, η, θ, γ > 0 (12)

The plots for the failure rate of the GoFW distribution using varying parameter
values and are presented in Figure 2. From the �gure, it can be deduced that
the failure rate has shape(s) that could either be uni-antimodal, unimodal,
increasing and decreasing (these depend on the values of the parameters).
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Figure 2: Plot for the failure rate of the Gompertz �exible Weibull distribution
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The Reversed Hazard Function:
This is derived from:

r(t) =
f(t)

F (t)
(13)

The reversed hazard function for the GoFW distribution is thus obtained as:

r(t) =
θ
(
α+ η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}

1− e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ} ;

α, η, θ, γ > 0 (14)

The Odds Function:
This is obtained using:

O(t) =
F (t)

1− F (t)
(15)

Thus, the odds function of the GoFW distribution is obtained as:

O(t) =
1− e

( θγ )
{
1−
[
exp
(
−eαt−

η
t

)]−γ}

e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ} ; α, η, θ, γ > 0 (16)

2.3 The Quantile Function and Median

This is derived as the inverse cdf and it can be represented by:

Q(u) = F−1(u) (17)

Thus, for GoFW distribution, the quantile function is obtained as:

Q(u) =
1

2α

{
ln

{
− ln

[
1−

(γ
θ

ln(1− u)
)]− 1

γ

}
+

[(
ln

{
− ln

[
1−

(γ
θ

ln(1− u)
)]− 1

γ

})2

+ 4αη

] 1
2

 (18)

where u ∼ Uniform(0, 1).

This implies that random samples can be generated from the GoFW distribu-
tion using the expression:
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xq =
1

2α

{
ln

{
− ln

[
1−

(γ
θ

ln(1− u)
)]− 1

γ

}
+

[(
ln

{
− ln

[
1−

(γ
θ

ln(1− u)
)]− 1

γ

})2

+ 4αη

] 1
2

 (19)

The median can be obtained by substituting u = 0.5 in equation (18) as follows:

Median =
1

2α

{
ln

{
− ln

[
1−

(γ
θ

ln(0.5)
)]− 1

γ

}
+

[(
ln

{
− ln

[
1−

(γ
θ

ln(0.5)
)]− 1

γ

})2

+ 4αη

] 1
2

 (20)

Other quantiles can also be obtained when appropriate value(s) of u are sub-
stituted.

2.4 Skewness and Kurtosis

The coe�cient of skewness and kurtosis of the GoFW distribution can be ob-
tained by making use of the quantile measures. Following Kenney and Keeping
(1962), the Bowely's skewness is given by:

Skewness =
Q0.75 − 2Q0.5 +Q0.25

Q0.75 −Q0.25
(21)

Also, Moors (1988) gave the Moors kurtosis as:

Kurtosis =
Q0.875 −Q0.625 −Q0.375 +−Q0.125

Q0.75 −Q0.25
(22)

where Q(·) are the quantiles which can be obtained from the expression in (18)
after substituting the corresponding value(s) for u.
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2.5 Moments

The rth moments of the GoFW distribution are derived as follows:

µr = E (T r) =

∫ ∞
0

trf(t)dt (23)

Then,

µr =

∫ ∞
0

trθ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
dt

However, the series expansion for f(t) has been given in equation (8). There-
fore, the rth moment of the GoFW distribution is the solution of:

µr =

m∑
i=0

n∑
k=0

d∑
j=0

s∑
l=0

(−1)k+l[γ (k + 1)]jθi+1

i! j! l!

( 1

γ

)i( i
k

)
[η(j + 1)]l×

∫ ∞
0

tr−l
(
α+

η

t2

)
e(j+1)(αt)dt (24)

which is,

µr =

m∑
i=0

n∑
k=0

d∑
j=0

s∑
l=0

(−1)k+l[γ (k + 1)]jθi+1

i! j! l!

( 1

γ

)i( i
k

)
[η(j + 1)]l×[∫ ∞

0

αtr−le(j+1)(αt)dt+

∫ ∞
0

ηtr−l−2e(j+1)(αt)dt

]
=

m∑
i=0

n∑
k=0

d∑
j=0

s∑
l=0

(−1)k+l[γ (k + 1)]jθi+1

i! j! l!

( 1

γ

)i( i
k

)
[η(j + 1)]l×[

Γ(r − l + 1)

αr−l (j + 1)
r−l+1

+
ηΓ(r − l − 1)

αr−l−1 (j + 1)
r−l−1

]
(25)

2.6 Moment Generating Function

Let Y denote a random variable, the moment generating function (mgf) is given
by:

MY (t) =

∫ ∞
0

etyf(y)dy (26)
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Using series expansion for ety,

MY (t) =

∞∑
r=0

tr

r!

∫ ∞
0

yrf(y)dy =

∞∑
r=0

tr

r!
µr (27)

Therefore from (25), the mgf of the GoFW distribution is derived as:

MY (t) =

m∑
i=0

n∑
k=0

d∑
j=0

s∑
l=0

∞∑
r=0

tr

r!

(−1)k+l[γ (k + 1)]jθi+1

i! j! l!

( 1

γ

)i( i
k

)
×

[η(j + 1)]l

[
Γ(r − l + 1)

αr−l (j + 1)
r−l+1

+
ηΓ(r − l − 1)

αr−l−1 (j + 1)
r−l−1

]
(28)

2.7 Distribution of Order Statistics

If t1, t2, ..., tn are random samples arranged in ascending order from a cdf and
pdf distributed according to the GoFW distribution, then the pdf of the kth

order statistics of the GoFW distribution is derived as follows:

fk:n(t) =
n!

(k − 1)!(n− k)!
f(t) [F (t)]

k−1
[1− F (t)]

n−k
(29)

=
n!

(k − 1)!(n− k)!
θ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
×

e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ} [
1− e

( θγ )
{
1−
[
exp
(
−eαt−

η
t

)]−γ}]k−1
×

[
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}]n−k
(30)

The distribution of both minimum and maximum order statistics of the GoFW
are therefore obtained as:

f1:n(t) =nθ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
×[

e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}]n−1
(31)
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and

fn:n(t) =nθ
(
α+

η

t2

)
eαt−

η
t

[
exp

(
−eαt−

η
t

)]−γ
e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}
×[

1− e
( θγ )

{
1−
[
exp
(
−eαt−

η
t

)]−γ}]n−1
(32)

respectively.

2.8 Estimation of Model Parameters

The unknown parameters of the GoFW distribution can be obtained by the
method of maximum likelihood estimation (MLE). Let us denote t1, t2, ..., tn
as random samples from the pdf of the GoFW distribution, the likelihood
function is thus obtained as:

f (t1, t2, ..., tn;α, η, γ, θ) =

n∏
i=1

[
θ

(
α+

η

t2i

)
e
αti− η

ti

[
exp

(
−eαti−

η
ti

)]−γ
×

e
( θγ )

{
1−
[
exp

(
−e

αti−
η
ti

)]−γ}]
(33)

Let L = log f (t1, t2, ..., tn;α, η, γ, θ) denote the log-likelihood function, then:

L =n log (θ) +

n∑
i=1

log

(
α+

η

t2i

)
+

n∑
i=1

(
αti −

η

ti

)
+ γ

n∑
i=1

e
αti− η

ti +(
θ

γ

){
1−

[
exp

(
−eαti−

η
ti

)]−γ}
(34)

The maximum likelihood estimates of parameters α, η, γ and θ can be derived
by solving the resulting nonlinear equation of dL

dα = 0, dL
dη = 0, dL

dγ = 0 and
dL
dθ = 0.

However, the solution could not be obtained analytically but it can be computed
numerically when data sets are available. Particularly, R software was adopted
in this research to compute the estimates.
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3. Real Life Application

To demonstrate the potentials of the GoFW distribution, it was applied to
three (3) real life data sets and it was compared with the Gompertz Weibull
(GoW), Gompertz Burr type XII (GoBXII), Gompertz Lomax (GoLo), ex-
ponentiated �exible Weibull (EFW), exponentiated �exible Weibull extension
(EFWE) and Kumaraswamy �exible Weibull (KuFW) distributions. The log
likelihood (l) value, Akaike information criterion (AIC), Bayesian information
criterion (BIC), corrected Akaike information criterion (AICC) and Hannan
Quinn information criterion (HQIC) are used as selection criteria. Their statis-
tics are de�ned as follows:

AIC =− 2l + 2k,

AICC =AIC +
2k (k + 1)

n− k − 1
,

and

BIC =− 2l + k log(n),

where k is the number of parameters in the model, n is the sample size and l(.)
represents the maximized value of the log-likelihood function. Smaller values
of these statistics indicate a better �t.

First data set:
This data set represents the waiting times (in minutes) of 100 bank customers
before service is being rendered. The data has been used previously by Ghitany
et al. (2008) and Oguntunde et al. (2017a). The summary of the data set is
given in Table 1:

Table 1: Data summary on 100 bank customers

n Min. Max. Median Mean Var. Skewness Kurtosis
100 0.800 38.500 8.100 9.877 52.37411 1.472765 5.540292

The results of the model �tting are however listed in Table 2:
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Table 2: The ML estimates, l, AIC, AICC, and BIC for the �rst data set

Distribution ML estimate (α̂, η̂, γ̂, θ̂) l AIC AICC BIC HQIC
GoFW (0.1223, 4.5967, 0.0060, 2.9837) -317.10 642.21 642.63 652.63 646.43
GoW (1.1742,−0.1589, 0.0893, 1.6221) -317.90 643.80 644.22 654.22 648.02
GoBXII (0.1056, 2.4125, 0.1618, 3.4292) -317.34 642.68 643.10 653.10 646.90
GoLo (0.0162, 3.0939, 3.0601, 0.4791) -319.33 646.67 647.09 657.09 650.88
EFW (0.3030, 0.0552, 19.6163,−−−) -320.57 647.13 647.38 654.95 650.29
EFWE (0.2830, 0.0349, 2.7840,−−−) -365.65 737.30 737.55 745.12 740.46
KuFW (3.8723, 3.0574, 0.0347, 1.6352) -321.51 651.02 651.45 661.45 655.24

From Table 2, the GoFW model has the lowest AIC, AICC, BIC, and HQIC
values. The di�erence between the AIC values of GoFW, GoW and GoBXII
models are less than 2 which indicate no substantial di�erence between the
models. Note that GoFW model yield the highest log-likelihood value. Hence,
we may conclude that the GoFW model provides a better �t compared to the
other competing models; Gompertz Weibull (GoW), Gompertz Burr type XII
(GoBXII), Gompertz Lomax (GoLo), exponentiated �exible Weibull (EFW),
exponentiated �exible Weibull extension (EFWE) and Kumaraswamy �exible
Weibull (KuFW) distributions.

The histogram of the data set with the estimated pdfs, cdfs for the competing
models are presented in Figures 3 and 4 respectively.
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Figure 3: Histogram of the �rst data set with the estimated pdf of the �tted models
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Figure 4: Plot for the estimated cdf of the �tted models

It is evident from these �gures that the GoFW provides a better �t to the
histogram than the other competing models.

Second data set:
This data set represents the lifetime of 50 devices. It was given by Aarset
(1987) and it has been widely reported in some other literature (for example,
see Lai et al. (2003), Silva et al. (2010), Wang et al. (2015)). The data summary
is as given in Table 3.

Table 3: Data summary on lifetime of 50 devices

n Min. Max. Median Mean Var. Skewness Kurtosis
50 0.10 86.00 48.50 45.69 1078.153 -0.137827 1.413863

The results of the model �tting are presented in Table 4.

Malaysian Journal of Mathematical Sciences 183



Khaleel, M. A. et al.

Table 4: The ML estimates, l, AIC, AICC, BIC and HQIC for the second data set

Distribution ML estimate (α̂, η̂, γ̂, θ̂) l AIC AICC BIC HQIC
GoFW (0.0533, 2.1597, 0.0088, 0.3237) -220.38 448.76 449.65 456.41 451.67
GoW (0.0376, 0.3132, 0.5288, 0.5865) -231.64 471.29 472.18 478.94 474.20
GoBXII (0.0087, 2.3870, 1.3760, 0.3922) -238.42 484.85 485.74 492.50 487.76
GoLo (1.6028, 3.6817, 0.0025, 2.4966) -235.90 479.80 480.69 487.45 482.72
EFW (4.2196, 0.0147, 0.1331,−−−) -226.98 459.97 460.50 465.71 462.16
EFWE (0.0797, 0.0145, 0.3869,−−−) -224.62 455.25 455.77 460.99 457.44
KuFW (0.1566, 0.0800, 0.0389, 1.7064) -221.33 450.66 451.55 458.31 453.58

From Table 4, although the AIC statistic show no substantial di�erence be-
tween the GoFW and KuFW models, the GoFW distribution has the lowest
AIC, AICC, BIC andHQIC values including the highest log-likelihood value,
then it can also be concluded that the GoFW distribution provides a better �t
than its counterparts.

The histogram of the second data set with the estimated pdfs, cdfs for the
competing models are presented in Figures 5 and 6.
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Figure 5: Histogram of the second data set with the estimated pdf of the �tted models
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Figure 6: Plot for the estimated cdf of the �tted models

From Figures 5 and 6, it can be seen that the GoFW distribution provides a
better �t to the histogram than the other competing models, it can therefore
be selected as the best among the other competing models.

Third data set:
This data represents the data set on strength of 1.5 cm glass �bres obtained
by workers at the UK National Physical Laboratory. The data set can also be
found in the works of Bourguignon et al. (2014), Merovci et al. (2016), Smith
and Naylor (1987). The data summary is as presented in Table 5.

Table 5: Data summary on glass �bres

n Min. Max. Median Mean Var. Skewness Kurtosis
63 0.550 2.240 1.590 1.507 0.10505 -0.87858 3.923761

The results obtained for all the competing models are as presented in Table
6.

Malaysian Journal of Mathematical Sciences 185



Khaleel, M. A. et al.

Table 6: The ML estimates, l, AIC, AICC, BIC and HQIC for the third data set

Distribution ML estimate (α̂, η̂, γ̂, θ̂) l AIC AICC BIC HQIC
GoFW (0.6551, 24.7586,−0.0862, 2.9009) -13.82 35.64 36.33 44.21 39.01
GoW (0.0097, 3.4978, 1.0184, 1.0020) -14.83 37.66 38.35 46.24 41.04
GoBXII (0.0482, 2.4765, 0.8928, 3.2441) -14.00 36.00 36.69 44.57 39.37
GoLo (0.0045, 8.1790, 0.5069, 1.5158) -14.50 37.01 37.69 45.57 40.37
EFW (0.5845, 2.1768, 6.6145,−−−) -15.46 36.93 37.34 43.36 39.46
EFWE (0.0291, 0.8491, 0.2739,−−−) -21.75 49.50 49.90 55.93 52.03
KuFW (0.5563, 0.2331, 2.4998, 4.6446) -14.12 36.23 36.92 44.81 39.61

From Table 6, AIC statistic indicate no substantial di�erence between GoFW
GoBXII, GoLo, EFW and KuFW models. We observed that the GoFW dis-
tribution has the lowest AIC, AICC, BIC and HQIC values including the
highest log-likelihood value, this means that the GoFW distribution provides
a better �t to the data set as compared to the other competing models.

The histogram of the third data set and the estimated pdfs, cdfs for the com-
peting models are presented in Figures 7 and 8.
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Figure 7: Histogram of the third data set with the estimated pdf of the �tted models
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Figure 8: Plot for the estimated cdf of the �tted models

From Figures 7 and 8, it shows that the GoFW provides a better �t to the
histogram than the other competing models. It can therefore be chosen as the
best distribution.

4. Simulation Study

To investigate the behavior of the GoFW parameters, data sets were gen-
erated from the GoFW distribution with a replication number of k = 1, 000;
random samples of sizes n = 50, 100, 200 and 300 were then further selected.
In this simulation study, three (3) di�erent cases were considered. For the �rst
case, the true parameter values considered are; α = 1, η = 1, θ = 1, γ = 1 while
α = 2, η = 2, θ = 2, γ = 2 and α = 0.5, η = 0.5, θ = 0.5, γ = 0.5 were considered
for the second and third cases respectively. Using R software, the MLE, bias
and root mean square error (RMSE) were obtained, the results are however
displayed in Tables 7 to 9.

Table 7: Simulation study at α = 1, η = 1, θ = 1, γ = 1

n Mean Bias RMSE
50 (1.0583, 1.0365, 1.0706, 0.9803) (0.0583, 0.0365, 0.0706,−0.0197) (0.2006, 0.2181, 0.4568, 0.3695)
100 (1.0263, 1.0284, 1.0571, 0.9913) (0.0263, 0.0284, 0.0571,−0.0087) (0.1421, 0.1611, 0.3362, 0.2915)
200 (1.0007, 1.0156, 1.0421, 1.0204) (0.0007, 0.0156, 0.0421, 0.0204) (0.0980, 0.1154, 0.2640, 0.2128)
300 (0.9977, 1.0064, 1.0201, 1.0218) (−0.0023, 0.0064, 0.0201, 0.0218) (0.0835, 0.0932, 0.20430.1914)
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Table 8: Simulation study at α = 2, η = 2, θ = 2, γ = 2

n Mean Bias RMSE
50 (2.0770, 2.0414, 2.0601, 2.0259) (0.0770, 0.0414, 0.0601, 0.0259) (0.3446, 0.2246, 0.6360, 0.6605)
100 (2.0416, 2.0391, 2.0930, 2.0253) (0.0416, 0.0391, 0.0930, 0.0253) (0.2538, 0.1783, 0.5291, 0.5641)
200 (2.0109, 2.0300, 2.1022, 2.0479) (0.0109, 0.0300, 0.1022, 0.0479) (0.1795, 0.1379, 0.42810.4498)
300 (1.9965, 2.0212, 2.0871, 2.0563) (−0.0035, 0.0212, 0.0871, 0.0563) (0.1457, 0.1128, 0.3805, 0.3736)

Table 9: Simulation study at α = 0.5, η = 0.5, θ = 0.5, γ = 0.5

n Mean Bias RMSE
50 (0.5146, 0.5314, 0.5298, 0.5007) (0.0146, 0.0314, 0.0298, 0.0007) (0.0690, 0.1559, 0.1822, 0.1418)
100 (0.5069, 0.5195, 0.5167, 0.4988) (0.0069, 0.0195, 0.0167,−0.0012) (0.0484, 0.1024, 0.1211, 0.1051)
200 (0.5006, 0.5078, 0.5068, 0.5080) (0.0006, 0.0078, 0.0068, 0.0080) (0.0332, 0.0689, 0.0831, 0.0782)
300 (0.4992, 0.5037, 0.5032, 0.5082) (−0.0008, 0.0037, 0.0032, 0.0082) (0.0271, 0.0549, 0.0672, 0.0638)

From Tables 7 to 9, the means get closer to the true parameter values as
sample size increases from 50 to 300, the absolute bias, root mean square error
(RMSE) also reduces for all the selected parameter values as the sample size
increases.

5. Conclusion

The Gompertz �exible Weibull (GoFW) distribution has been successfully
derived in this paper and its various statistical properties have been established.
The model's shape could be unimodal or decreasing. The maximum likelihood
method of estimation is proposed in estimating the unknown model parameters.
The model exhibits uni-antimodal, unimodal, increasing and decreasing failure
rates, hence, it can be used to describe and model real life phenomena with in-
verted bathtub, bathtub, increasing and decreasing failure rates. Applications
to three real life data sets reveals that the GoFW distribution is an improve-
ment and a better choice over the Gompertz Weibull (GoW), Gompertz Burr
type XII (GoBXII), Gompertz Lomax (GoLo), exponentiated �exible Weibull
(EFW), exponentiated �exible Weibull extension (EFWE) and Kumaraswamy
�exible Weibull (KuFW) distributions. From the simulation study, it can be
deduced that the GoFW parameters are stable.
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